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1. Learn about the eight 

most common models 
used in time-series 
analysis 

2. Perform a time-series 
analysis utilizing a sample 
from Risk Simulator’s 
example folder 
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Theory 
The eight most common time-series models, segregated by seasonality and trend, are shown in Figure 
1. For instance, if the data variable has no trend or seasonality, then a single moving-average model or 
a single exponential-smoothing model would suffice. However, if seasonality exists but no discernible 
trend is present, either a seasonal additive or seasonal multiplicative model would be better, etc.  
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Figure 1. The Eight Most Common Time-Series Methods 

Procedure 
 Start Excel and type in or open an existing spreadsheet with the relevant historical data (the 

following example uses the Time-Series Forecasting file in the examples folder). 

 Make sure you start a new simulation profile or that there is an existing profile in the model if 
you want the forecast results to automatically generate Monte Carlo assumptions. 

 Select the historical data not including the variable name (data should be listed in a single 
column). 

 Select Risk Simulator | Forecasting | Time-Series Analysis (see Figure 2).  

 Choose the model to apply, enter the relevant assumptions, and click OK. 
To follow along in this example, choose Auto Model Selection, enter 4 for seasonality periods per cycle, 
and forecast for 4 periods. Figure 3 shows the sample results generated by using the Forecasting tool. 
The model used was a Holt-Winters multiplicative model. Notice that in Figure 3, the model-fitting 
and forecast chart indicate that the trend and seasonality are picked up nicely by the Holt-Winters 
multiplicative model. The time-series analysis report provides the relevant optimized alpha, Beta, and 
gamma parameters; the error measurements; fitted data; forecast values; and forecast-fitted graph. The 
parameters are simply for reference. Alpha captures the memory effect of the base-level changes over 
time, Beta is the trend parameter that measures the strength of the trend, while gamma measures the 
seasonality strength of the historical data. The analysis decomposes the historical data into these three 
elements and then recomposes them to forecast the future. The fitted data illustrate the historical data 
and, using the recomposed model, show how close the forecasts are in the past (a technique called 
backcasting). The forecast values are either single-point estimates or assumptions (if the automatically 
generated assumptions option is chosen and if a simulation profile exists). The graph illustrates the 
historical, fitted, and forecast values. The chart is a powerful communication and visual tool to see 
how good the forecast model is. 

This time-series analysis module contains the eight time-series models shown in Figure 1. You can 
choose the specific model to run based on the trend and seasonality criteria or choose the Auto Model 
Selection, which will automatically iterate through all eight methods, optimize the parameters, and find 
the best-fitting model for your data. Alternatively, if you choose one of the eight models, you can also 
deselect the Optimize checkboxes and enter your own alpha, Beta, and gamma parameters. In 
addition, you would need to enter the relevant seasonality periods if you choose the automatic model 

“How do you perform a time-

series analysis using Risk 

Simulator?” 
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selection or any of the seasonal models. The seasonality input must be a positive integer (e.g., if the data is quarterly, enter 4 as the 
number of seasons or cycles a year, or enter 12 if monthly data, or any other positive integer representing the data periods of a full 
cycle). Next, enter the number of periods to forecast. This value also has to be a positive integer. The maximum runtime is set at 300 
seconds. Typically, no changes are required. However, when forecasting with a significant amount of historical data, the analysis might 
take slightly longer and if the processing time exceeds this runtime, the process will be terminated. You can also elect to have the 
forecast automatically generate assumptions; that is, instead of single-point estimates, the forecasts will be assumptions. However, to 
automatically generate assumptions, a simulation profile must first exist. Finally, the polar parameters option allows you to optimize 
the alpha, Beta, and gamma parameters to include zero and one. Certain forecasting software allows these polar parameters while 
others do not. Risk Simulator allows you to choose which to use. Typically, there is no need to use polar parameters.  

 

Figure 2. Time-Series Analysis 

Alpha, Beta, Gamma RMSE Alpha, Beta, Gamma RMSE
0.00, 0.00, 0.00 914.824 0.00, 0.00, 0.00 914.824
0.10, 0.10, 0.10 415.322 0.10, 0.10, 0.10 415.322
0.20, 0.20, 0.20 187.202 0.20, 0.20, 0.20 187.202
0.30, 0.30, 0.30 118.795 0.30, 0.30, 0.30 118.795
0.40, 0.40, 0.40 101.794 0.40, 0.40, 0.40 101.794
0.50, 0.50, 0.50 102.143

The analysis was run with alpha = 0.2429, beta = 1.0000, gamma = 0.7797, and seasonality = 4

Period Actual Forecast Fit
1 684.20 RMSE 71.8132
2 584.10 MSE 5157.1348
3 765.40 MAD 53.4071
4 892.30 MAPE 4.50%
5 885.40 684.20 Theil's U 0.3054
6 677.00 667.55
7 1006.60 935.45
8 1122.10 1198.09
9 1163.40 1112.48

10 993.20 887.95
11 1312.50 1348.38
12 1545.30 1546.53
13 1596.20 1572.44
14 1260.40 1299.20
15 1735.20 1704.77
16 2029.70 1976.23
17 2107.80 2026.01
18 1650.30 1637.28
19 2304.40 2245.93
20 2639.40 2643.09

Forecast 21 2713.69
Forecast 22 2114.79
Forecast 23 2900.42
Forecast 24 3293.81

The best-fitting test for the moving average forecast uses the root mean squared errors (RMSE). The RMSE calculates the square root of the average squared deviations of the fitted
values versus the actual data points.

Mean Squared Error (MSE) is an absolute error measure that squares the errors (the difference between the actual historical data and the forecast-fitted data predicted by the model) to
keep the positive and negative errors from canceling each other out. This measure also tends to exaggerate large errors by weighting the large errors more heavily than smaller errors
by squaring them, which can help when comparing different time-series models. Root Mean Square Error (RMSE) is the square root of MSE and is the most popular error measure,
also known as the quadratic loss function. RMSE can be defined as the average of the absolute values of the forecast errors and is highly appropriate when the cost of the forecast
errors is proportional to the absolute size of the forecast error. The RMSE is used as the selection criteria for the best-fitting time-series model.

Mean Absolute Percentage Error (MAPE) is a relative error statistic measured as an average percent error of the historical data points and is most appropriate when the cost of the
forecast error is more closely related to the percentage error than the numerical size of the error. Finally, an associated measure is the Theil's U statistic, which measures the naivety of
the model's forecast. That is, if the Theil's U statistic is less than 1.0, then the forecast method used provides an estimate that is statistically better than guessing.

Error Measurements

Holt-Winter's Multiplicative

Summary Statistics

Time-Series Analysis Summary

When both seasonality and trend exist, more advanced models are required to decompose the data into their base elements: a base-case level (L) weighted by the alpha parameter; a
trend component (b) weighted by the beta parameter; and a seasonality component (S) weighted by the gamma parameter. Several methods exist but the two most common are the
Holt-Winters' additive seasonality and Holt-Winters' multiplicative seasonality methods. In the Holt-Winter's additive model, the base case level, seasonality, and trend are added
together to obtain the forecast fit.

 
Figure 3. Example Holt-Winters Forecast Report 

 

 


